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The  rapid  development  of  low-bandgap  (LBG)  non-
fullerene  acceptors  and  wide-bandgap  (WBG)  copolymer
donors  in  recent  years  has  boosted  the  power  conversion
efficiency  (PCE)  of  organic  solar  cells  (OSCs)  to  the  18%
level[1−21].  The  commercialization  of  OSCs  is  highly  expected.
However,  critical  issues like the cost and the stability also de-
termine whether  OSCs can enter  the market  or  not[22].  Active
materials,  i.e.  donors and acceptors,  are the key materials  de-
termining  the  performance  and  cost  of  OSCs[23].  Nowadays,
the  state-of-the-art  donors  and  acceptors  like  D18[4],  PM6[24],
Y6[3],  IT-4F[25] and  COi8DFIC[11] generally  contain  fluorine
atoms,  presenting  high  synthesis  cost.  Replacing  fluorine
with chlorine to make chlorinated donors or acceptors is an ef-
fective strategy to lower the cost while maintain the high effi-
ciency for organic solar cells [26]. In the past few years, remark-
able  progress  has  been  made  in  Cl-containing  donors.  In
2014,  Wang et  al.  reported  a  chlorinated  phenazine  copoly-
mer  PCTClP  with  a  low  bandgap  and  a  deep  HOMO  level[27].
Solar  cells  based  on  PCTClP  and  a  fullerene  acceptor  PC71BM
gave  a  PCE  of  4.06%.  In  2015,  Pei et  al.  designed  a  chlorin-
ated  isoindigo  copolymer  Cl-IIDT[28].  Thanks  to  the  chlorina-
tion,  Cl-IIDT  shows reduced crystallinity  and a  preferred face-
on orientation, delivering a PCE of 4.60% in fullerene-based sol-
ar  cells.  In  2017,  He et  al.  used  monochlorinated  benzothi-
adiazole  unit  as  the  building block  to  construct  an  asymmet-
ric  copolymer  donor  PBDTHD-ClBTDD[29].  The  PBDTHD-ClBT-
DD:PC71BM  cells  afforded  decent  PCEs  up  to  9.11%.  In  the
same year,  Peng et al.  developed an efficient small  molecular

donor  BDTTS-Cl-R  by  introducing  Cl  atoms  into  the  sulfuret-
ted  benzodithiophene  unit[30].  BDTTS-Cl-R:PC71BM  solar  cells
gave high PCEs up to 10.78%. In 2018,  Hou et al.  reported an
efficient  chlorinated  copolymer  PBDB-T-2Cl  (also  called
PM7)[31]. Solar cells based on PBDB-T-2Cl and a nonfullerene ac-
ceptor  IT-4F  delivered  a  high  PCE  of  14.4%  (certified  13.9%).
In  2020,  Yan et  al.  reported  17.04%  efficiency  solar  cells  by
combining  PM7  with  a  LBG  nonfullerene  acceptor  Y6[32].  This
is  the  highest  efficiency  from  chlorinated-donor-based  solar
cells  to  date.  Besides  the  works  mentioned  above,  many  re-
search  groups  also  made  contributions  in  the  development
of  chlorinated  donors[33−43].  Previously,  our  group  reported  a
highly  efficient  fluorinated  copolymer  donor  D18,  which  de-
livered  outstanding  PCEs  up  to  18.22%  (certified  17.6%)  in
Y6-based solar cells[4, 44]. In this work, we report the photovolta-
ic  performance  of  a  chlorinated  analogue  of  D18,  the  D18-Cl
(Fig.  1(a)).  Compared  with  D18,  D18-Cl  shows  a  deeper
HOMO level.  This  led  to  higher  open-circuit  voltages  (Voc)  for
D18-Cl:Y6  solar  cells.  When  combining  D18-Cl  with  another
LBG  nonfulllerene  acceptor  N3[45],  an  outstanding  PCE  of
18.13%  (certified  17.6%)  was  achieved,  setting  a  new  record
for the chlorinated-donor-based organic solar cells.

D18-Cl  was synthesized via the Stille  copolymerization of
the  dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole
(DTBT)  monomer[4] with  (4,8-bis(5-(2-ethylhexyl)-4-chloro-
thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(tri-
methylstannane)  (Scheme  S1).  After  Soxhlet  extraction,  D18-
Cl  was  obtained  in  82%  yield.  The  number-average  molecu-
lar  weights  (Mn)  and the polydispersity  index (PDI)  for  D18-Cl
are 102.7 kDa and 1.95, respectively. D18-Cl is soluble in chloro-
form  and  chlorobenzene.  The  normalized  absorption  spectra
for  D18-Cl  in  chloroform  and  as  thin  film  are  shown  in
Fig.  1(b).  In  solution,  D18-Cl  shows  an  absorption  band  at
410–640  nm,  with  a  peak  at  574  nm.  The  D18-Cl  film  shows
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two  peaks  at  535  and  568  nm,  respectively.  The  additional
peak  at  535  nm  suggests  the H-aggregation  tendency  of
D18-Cl  in  solid  state[46].  The  optical  bandgap  (Eg

opt)  estim-
ated  from  the  absorption  onset  of  D18-Cl  film  is  1.99  eV,
which is similar to that of D18 (1.98 eV)[4]. The absorption spec-
tra  for  the  acceptors  Y6  and  N3  are  also  shown  in Fig.  1(b).
They are well  complementary  with that  of  D18-Cl.  The fronti-
er  orbital  energy  levels  of  D18-Cl  were  estimated  from  cyclic
voltammetry  (CV)  measurements  (Fig.  S2).  The  HOMO  and
LUMO energy levels for D18-Cl are –5.56 and –2.78 eV, respect-
ively. Compared with D18[4], D18-Cl shows deeper HOMO and
LUMO levels.  We also  investigated the  frontier  orbital  energy
levels by using density functional theory (DFT) calculation. As
shown  in  Fig.  S3,  the  DFT-predicted  HOMO  and  LUMO  levels
are  –4.94  and  –2.59  eV  for  D18,  and  –4.97  and  –2.61  eV  for
D18-Cl, respectively.

Next,  we  evaluated  the  performance  of  D18-Cl  by  fab-
ricating  conventional  solar  cells  with  a  structure  of  ITO/PE-
DOT:PSS/D18-Cl:Y6 (or D18-Cl:N3)/PDIN/Ag. The D/A ratio, act-
ive layer thickness and additive content for the cells were op-
timized.  The  best  D18-Cl:Y6  solar  cells  gave  a  PCE  of  17.12%,
with  a Voc of  0.863  V,  a  short-circuit  current  density  (Jsc)  of

27.08 mA cm–2,  and a fill  factor (FF) of 73.3% (Fig. 1(c)).  These
cells  have  a  D/A  ratio  of  1  :  1.4  (w/w),  an  active  layer  thick-
ness of 108 nm and 0.5 vol% diphenyl ether (DPE) as the addit-
ive  (Tables  S1–S3).  Compared  with  the  reported  D18:Y6
cells[4], D18-Cl:Y6 cells gave slightly higher Voc due to the deep-
er  HOMO  level  of  D18-Cl.  On  the  other  hand,  the  best  D18-
Cl:N3  solar  cells  afforded  a  higher  PCE  of  18.13%,  with  a Voc

of  0.859  V,  a Jsc of  27.85  mA  cm–2,  and  a  FF  of  75.7%.  These
cells  have  a  D/A  ratio  of  1  :  1.4  (w/w),  an  active  layer  thick-
ness  of  112  nm  and  0.5  vol%  DPE  as  the  additive  (Tables
S4–S6).  The  best  D18-Cl:N3  solar  cells  were  also  measured  at
the National Institute of Metrology (NIM) (Beijing), and a certi-
fied PCE of  17.6% (Voc,  0.843 V; Jsc,  27.13 mA cm–2;  FF,  76.8%;
effective  area,  2.580  mm2)  was  recorded  (Fig.  S4).  This  effi-
ciency  is  comparable  to  that  of  D18:Y6  solar  cells[4].  It  should
be noted that different from D18:Y6 cells needing solvent-an-
nealing treatment, no post-treatment is needed for D18-Cl:N3
cells.  The  external  quantum  efficiency  (EQE)  spectra  for  D18-
Cl:Y6  and  D18-Cl:N3  solar  cells  are  shown  in Fig.  1(d).  The
D18-Cl:N3 cells afford >80% EQE at 440–820 nm, with a maxim-
um  of  89%  at  550  nm.  The  D18-Cl:Y6  cells  show  lower  EQE,
with  a  maximum  EQE  of  85%  at  530  nm.  The  integrated  cur-
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Fig. 1. (Color online) A highly efficient chlorinated copolymer donor D18-Cl. (a) The chemical structures for D18, D18-Cl, Y6 and N3. (b) Absorp-
tion spectra for D18-Cl solution, D18-Cl film, Y6 film and N3 film. (c) J–V curves for D18-Cl:Y6 and D18-Cl:N3 solar cells. (d) EQE spectra for D18-
Cl:Y6 and D18-Cl:N3 solar cells. (e) Progress of chlorinated-donor-based OSCs.
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rent  densities  for  D18-Cl:Y6  and  D18-Cl:N3  solar  cells  are
25.92  and  26.86  mA  cm–2,  respectively.  To  the  best  of  our
knowledge,  the  18.13%  efficiency  is  the  highest  value  achie-
ved from chlorinated-donor-based solar cells so far (Fig. 1(e)).

To  understand  why  D18-Cl:N3  solar  cells  gave  higher Jsc
and  FF  than  D18-Cl:Y6  cells,  we  studied  the  charge  genera-
tion,  transport  and  recombination  in  both  devices.  As  shown
in  Fig.  S5,  the  exciton  dissociation  probabilities  (Pdiss)  for  the
D18-Cl:Y6  and  D18-Cl:N3  cells  are  97.4%  and  98.4%,  respect-
ively,  indicating  more  efficient  charge  generation  in  the  lat-
ter.  Hole  and  electron  mobilities  (μh and μe)  were  measured
by  using  space  charge  limited  current  (SCLC)  method  (Figs.
S6–S8 and Table S7)[47, 48].  The D18-Cl  pure film shows a high
μh of  1.00  ×  10–3 cm2 V–1 s–1.  For  blend  films,  D18-Cl:N3  film
gave  a  higher μh of  6.09  ×  10–4 cm2 V–1 s–1,  a  higher μe of
3.83 × 10–4 cm2 V–1 s–1,  and a smaller μh/μe of  1.59 than D18-
Cl:Y6 film. This suggests the faster and more balanced charge
transport  in  D18-Cl:N3  film.  We  studied  the  bimolecular  re-
combination  by  plotting Jsc against  light  intensity  (Plight)  (Fig.
S9)[49–53].  D18-Cl:N3  cells  showed  a α value  of  0.980,  which  is
closer to 1 as compared to that of D18-Cl:Y6 cells (0.975), sug-
gesting  less  bimolecular  recombination  in  D18-Cl:N3  cells.
The  more  efficient  charge  generation,  faster  and  more  bal-
anced  charge  transport,  and  the  suppressed  bimolecular  re-
combination should account for the higher Jsc and FF of D18-
Cl:N3 cells.

The morphology for D18-Cl:Y6 and D18-Cl:N3 blend films
was  studied  by  using  atomic  force  microscope  (AFM)  (Fig.
S10).  D18-Cl:Y6  and  D18-Cl:N3  films  without  DPE  additive
presented  smooth  surface  and  unique  nanostructures.  After
adding  0.5  vol%  DPE,  both  films  became  rougher.  The  root-
mean-square  roughnesses  (Rrms)  increased  from  0.82  to
1.52 nm for D18-Cl:Y6 film, and from 0.79 to 1.22 nm for D18-
Cl:N3  film,  respectively.  Since  the  addition  of  DPE  enhanced
Jsc and FF for both D18-Cl:Y6 and D18-Cl:N3 solar cells (Tables
S3  and  S6),  such  morphological  changes  might  improve  the
phase separation and favor to build up more efficient charge-
transporting  networks  at  the  nanoscale,  thus  facilitating
charge transport and suppressing charge recombination.

In  summary,  we  developed  a  highly  efficient  chlorinated
copolymer  donor  D18-Cl.  Compared  with  D18,  D18-Cl
presents deeper HOMO and LUMO energy levels. D18-Cl:N3 sol-
ar  cells  delivered  a  PCE  of  18.13%,  which  is  the  highest  effi-
ciency  for  chlorinated-donor-based  OSCs  to  date.  This  work
demonstrates  the  great  potential  of  cost-effective  chlorin-
ated polymer donors for OSCs.
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